Matrices

Operations on Matrices


  • A matrix A = [aij]× n is said to be horizontal matrix if m < n
  • A matrix A = [aij]× n is said to be vertical matrix if m > n
  • A matrix A = [aij]× n is said to be square matrix if m = n
  • A matrix A = [aij]× n is said to be Row matrix if m = 1
  • A matrix A = [aij]× n is said to be column matrix if n = 1
  • A matrix A = [aij]m × n is said to be rectangular matrix if m = n
  • A matrix A = [aij]m x n is said to be zero matrix if aij = 0 ∀ i and j
  • A matrix A = [aij]m x n is said to be unit matrix if aij = \tt \begin{cases}1 & for \ i = j\\0 & for \ i \neq j\end{cases}
    \tt I_{2}=\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}
    \tt I_{3}=\begin{bmatrix}1 & 0&0 \\0 & 1&0\\0 & 0&1 \end{bmatrix}
    \tt I_{4}=\begin{bmatrix}1 & 0&0&0 \\0 & 1&0&0\\0 & 0&1&0\\0 & 0&0&1 \end{bmatrix}
  • A square matrix A = [aij]× m is said to be diagonal matrix if aij = 0 for i ≠ j
            Ex : \tt A=\begin{bmatrix}3 & 0&0 \\0 & 4&0\\0 & 0&7 \end{bmatrix}
  • If A = diag (d1. d2, d3 ..... dn) then \tt A^{n}=diag\left(d_1^n,d_2^n,d_3^n,....d_n^n\right)
  • A square matrix A = [aij]× m is said to be scalar matrix if aij = \tt \begin{cases}k & for \ i = j\\0 & for \ i \neq j\end{cases}
           Ex : \tt A=\begin{bmatrix}4 & 0&0 \\0 & 4&0 \\0&0&4 \end{bmatrix}
  • A square matrix A = [aij]× m is said to be upper triangular matrix id aij = 0 for i > j
          Ex : \tt A=\begin{bmatrix}-2 & 3&5 \\0 & 5&9 \\0&0&6 \end{bmatrix}
  • A square matrix A = [aij]m × n is said to be lower triangular matrix if aij = 0 for i < j 
          Ex : \tt A=\begin{bmatrix}-5 & 0&0 \\3 & 1&0 \\2&5&9 \end{bmatrix}
  • Equality of matrices: Two matrices A and B are said be equal if 
        i) Order of A = Order of B 
       ii) The corresponding elements of A and B are equal
  • Trace of the matrix : The sum of the principal diagonal elements of the square matrix A is called "Trace of matrix A
         Ex :\tt A=\begin{bmatrix}a_{11} & a_{12}&a_{13}\\a_{21} & a_{22}&a_{23}\\a_{31} & a_{32}&a_{33} \end{bmatrix}
         Tr (A) = a11 + a22 + a33
  • Tr (KA) = K trace (A)
    Tr (A + B) = tr (A) + tr (B)
    Tr (A − B) = tr (A) − tr (B)
    Tr (AB) ≠ tr (A) · tr (B)
    Tr (AB) = Tr (BA)
    Tr (ABC) = Tr (BCA) = Tr (CAB) = Tr (BAC) = Tr (CAB) = Tr (ACB)
  • Idempotent matrix : A square matrix A is said to be idempotent if A2 = A i.e if AB = A and BA = B then A2 = A, B2 = B
  • Involutery matrix : A square matrix A is called involutery matrix if A2 = I

Part1: View the Topic in this video From 41:07 To 57:05

Part2: View the Topic in this video From 00:40 To 09:50

Disclaimer: Compete.etutor.co may from time to time provide links to third party Internet sites under their respective fair use policy and it may from time to time provide materials from such third parties on this website. These third party sites and any third party materials are provided for viewers convenience and for non-commercial educational purpose only. Compete does not operate or control in any respect any information, products or services available on these third party sites. Compete.etutor.co makes no representations whatsoever concerning the content of these sites and the fact that compete.etutor.co has provided a link to such sites is NOT an endorsement, authorization, sponsorship, or affiliation by compete.etutor.co with respect to such sites, its services, the products displayed, its owners, or its providers.

  • Addition of Matrics :
    If A = [aij]m x n B = [bij]m x n  ⇒ A + B = [aij + bij]m x n 
    → A + B = B + A (commutative)
    → A + (B + C) = (A + B) + C (Associative)
    → A + O = O + A = A (O is the additive identity)
    → A + (−A) = −A + A = 0 (The additive inverse of A is −A)
    → A + B = A + C ⇒ B = C
    → A + B = C ⇒ A = C − B
  • Multiplication of Matrices : If A and B are the two matrices, then its product AB is defined if the number of columns in A is equal to number of rows in B. i.e,
    A = [aij]m x n B = [bij]n x p
    ⇒ AB = [cij]m x p
  • If \tt A=\begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix}B=\begin{bmatrix}b_{11} & b_{12} \\b_{21} & b_{22} \end{bmatrix}
    \tt AB=\begin{bmatrix}a_{11} & b_{11}&+&a_{12} & b_{21}&& a_{11} & b_{12}&+&a_{12} & b_{22} \\a_{21} & b_{11}&+&a_{22} &        b_{21}&& a_{21} & b_{12}&+&a_{22} & b_{22} \end{bmatrix}
  • → AB ≠ BA  (Not commutative)
    → A(BC) = (AB) C (Associative)
    → AI = IA = A (I is multiplicative identity)
    → AA−1 = A−1 A = I (The multiplicative inverse of A is A−1)
    → (Am)n = Amn
    → Am. An = Am+n
    → A(B + C) = AB + AC
    → K (AB) = (KA) B = A (KB) for any scalar k.

1. Properties of matrix addition : If A, B and C are matrices of same order, then
    (i)   A + B = B + A                       (Commutative law)
    (ii)  (A + B) + C = A + (B + C)     (Associative law)
    (iii)  A + O = O + A = A, where O is zero matrix which is additive identity of the matrix.
    (iv)  A + (−A) = 0 = (−A) + A, where (−A) is obtained by changing the sign of every element of A, which is additive inverse of the matrix.
    (v) A + B = A + C and B + A = C + A   then B = C     (Cancellation law)

2. Properties of scalar multiplication : If A, B are matrices of the same order and λ, μ are any two scalars then
   (i)  λ(A + B) = λA + λB
   (ii) (λ + μ)A = λA + μA
   (iii) λ(μA) = (λμA) = μ(λA)
   (iv) (−λA) = −(λA) = λ(−A)

3. Properties of matrix multiplication : If A, B and C are three matrices such that their product is defined, then
   (i)   AB ≠ BA,               (Generally not commutative)
   (ii)  (AB)C = A(BC),      (Associative law)
   (iii) IA = A = AI, where I is identity matrix for matrix multiplication.
   (iv) A(B + C) = AB + AC, (Distributive law)
   (v)  If AB = AC \nRightarrow B = C, (Cancellation law is not applicable)

4. Remember that if A and B are two matrices of the same order, then
    (i) (A + B)2 = A2 + B2 + AB + BA
    (ii) (A − B)2 = A2 + B2 − AB − BA
    (iii) (A − B)(A + B) = A2 − B2 + AB − BA
    (iv) (A + B)(A − B) = A2 − B2 − AB + BA
    (v) A(−B) = (−A)(B) = −AB