# Fundamental Principle of Counting

•  If a operation can be performed in ‘m’ different ways, following which a second operation can be performed in ‘n’ different ways then the two operations in succession can be performed in m × n different ways.

### Part1: View the Topic in this video From 00:38 To 22:16

Disclaimer: Compete.etutor.co may from time to time provide links to third party Internet sites under their respective fair use policy and it may from time to time provide materials from such third parties on this website. These third party sites and any third party materials are provided for viewers convenience and for non-commercial educational purpose only. Compete does not operate or control in any respect any information, products or services available on these third party sites. Compete.etutor.co makes no representations whatsoever concerning the content of these sites and the fact that compete.etutor.co has provided a link to such sites is NOT an endorsement, authorization, sponsorship, or affiliation by compete.etutor.co with respect to such sites, its services, the products displayed, its owners, or its providers.

•  If a operation can be performed in ‘m’ different ways, following which a second operation can be performed in ‘n’ different ways then the two operations in succession can be performed in m × n different ways.
•  If an operation can be performed in ‘m’ different ways and another operation, which is independent of the first operation, can be performed in ‘n’ different ways. Then either of ‘2’ operations can be performed in (m + n) ways.
• If an event can occur in 'm' different ways, following which another event can occur in 'n' different ways, following which a third event can occur in p different ways then the total number of occurrence to 'the events in the given order is m × n × p'.