Alternating Current

AC Voltage Applied to a Series LCR Circuit and Resonance


Alternating emf  E = E0 sin ωt

Alternating current  I = I0 sin (ωt ± θ)

View the Topic in this video From 00:33 To 51:33

Disclaimer: Compete.etutor.co may from time to time provide links to third party Internet sites under their respective fair use policy and it may from time to time provide materials from such third parties on this website. These third party sites and any third party materials are provided for viewers convenience and for non-commercial educational purpose only. Compete does not operate or control in any respect any information, products or services available on these third party sites. Compete.etutor.co makes no representations whatsoever concerning the content of these sites and the fact that compete.etutor.co has provided a link to such sites is NOT an endorsement, authorization, sponsorship, or affiliation by compete.etutor.co with respect to such sites, its services, the products displayed, its owners, or its providers.

1. Alternating current voltage applied to the L-C-R then Alternating  current, I = I0 sin (ωt ± θ)

2. Alternating current voltage applied to the L-C-R then Resultant voltage, V = \sqrt{V^{2}_{R} + (V_{L} - V_{C})^{2}}

3. Alternating current voltage applied to the L-C-R then Impedance, Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}