Chemical Thermodynamics

Spontaneity and Change in Entropy


Change in entropy (ΔS) :
\triangle S = \frac{q_{rev}}{T}
qrev = heat given to the system reversibly and isothermally.
Calculation of ΔS of phase transition :
melting of Ice (fusion)
ΔHfusion = 6 kJ / mol = qrev
\triangle S = \frac{6000}{273}
\triangle S = \frac{\triangle H _{vap}}{B.pt}
ΔStotal = ΔSsystem + ΔSsurrounding > 0

Spontaneous Property :
ΔG = −ve : spontaneous
ΔG = +ve : Non spontaneous
ΔG = 0 : equilibrium

Criteria of Spontaneity :

ΔH ΔS ΔG condition
−ve +ve −ve (Sp) ΔH > TΔS
−ve −ve −ve (Sp) (at low T)  
+ve +ve −ve (Sp) |T.ΔS| > |ΔH|
+ve −ve +ve at high T non spontaneous
+ + + (non spontaneous) at low T

 

Part1: View the Topic in this Video from 18:35 to 59:50

Part2: View the Topic in this Video from 1:08 to 31:40

Disclaimer: Compete.etutor.co may from time to time provide links to third party Internet sites under their respective fair use policy and it may from time to time provide materials from such third parties on this website. These third party sites and any third party materials are provided for viewers convenience and for non-commercial educational purpose only. Compete does not operate or control in any respect any information, products or services available on these third party sites. Compete.etutor.co makes no representations whatsoever concerning the content of these sites and the fact that compete.etutor.co has provided a link to such sites is NOT an endorsement, authorization, sponsorship, or affiliation by compete.etutor.co with respect to such sites, its services, the products displayed, its owners, or its providers.

1. \tt \triangle S = nC_V \ ln \left(\frac{T_{2}}{T_{1}}\right)+nR \ ln \left(\frac{V_{2}}{V_{1}}\right)

2. \tt \triangle S_{melting} =\frac{\triangle H _{fusion}}{T_{m}}

   Tm = melting point of substance

3. \tt \triangle S_{vaporisation} =\frac{\triangle H _{vaporisation}}{T_{b}}

     Tb = boiling point of substance

4. \tt \triangle S_{sublimation} =\frac{\triangle H _{sublimation}}{T_{sub}}

      Tsub = sublimation temperature