Binomial Theorem

Properties of Binomial Coefficients and Simple Applications


Tips :

  •  nCo , nC1 , nC2 ......... nCn are called the binomial coefficients in the expansion of (x + a)n. They are denoted by Co , C1 , C2 .......... Cn
  • Co , C1 , C2 , C3 ......... Cn are the binomial coefficients in the expansion of (1 + x)n
  • nCo + nC1 + nC2 + ......... + nCn = 2n
  • nCo - nC1 + nC2 - nC3 + ......... +(−1)n . nCn = 0
  • nCo + nC2 + nC4 +........= nC1 + nC3 + .......... = 2n−1
  • \tt C_{O} + \frac{C_{1}}{2}x + \frac{C_{2}}{3}x^{2}+......+\frac{C_{n}}{n+1}x^{n}=\frac{\left(1+x\right)^{n+1}-1}{\left(n+1\right)x}
  • \tt C_{O} + \frac{C_{1}}{2}+\frac{C_{2}}{3}+\frac{C_{3}}{4}+..........+\frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{n+1}
  • \tt C_{O} - \frac{C_{1}}{2}+\frac{C_{2}}{3}-\frac{C_{3}}{4}+...........+\left(-1\right)^n\frac{C_{n}}{n+1}=\frac{1}{n+1}
  • \tt C_{O} +\frac{C_{2}}{3}+\frac{C_{4}}{5}+........=\frac{2^n}{n+1}
  • \tt \frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+.......=\frac{2{^n}-1}{n+1}
  • a. Co + (a + d) C1 + (a + 2d) C2 + .........+ (a + nd). Cn = (2a + nd) 2n−1
  • a. Co − (a + d) C1 + (a + 2d) C2 − .......... + (−1)n (a + nd). Cn = O
  • \tt C_0^2 +C_1^2+C_2^2 +..........+C_n^2 = ^{2n}C_n
  • \tt C_0^2 -C_1^2+C_2^2-C_3^2+ ........ +\left(-1\right)^{n}.C_n^2 = \left(-1\right)^{n/2}\ ^nC_\frac{n}{2}\left[n\ is\ even\right]=0,\left(n\ i \ odd\right)
  • \tt a C_0^2 \left(a+d\right)C_1^2+\left(a+2d\right)C_2^2+ ...... +\left(a+nd\right)C_n^2=\left[\frac{2a+nd}{2}\right].^{2n}C_n
  • Co. Cr + C1 Cr+1 + ...... +Cn−r. Cn = 2nCn−r


Tricks :

  • The coefficient of xr in (1 + x)m . (1 + x)n is (m+n)Cr
  • The coefficient of the term independent of ‘x’ in the expansion of \tt \left(1+x\right)^{m}\left(1+\frac{1}{x}\right)^{n} \ is ^{m+n}C_n
  • If the greatest term in the expansion of (1 + x)2n has also greatest coefficient, then \tt \frac{n}{n+1}< x <\frac{n+1}{n}
  • The greatest term in the expansion of (1 + x)2n-1 has also greatest coefficient, then \tt \frac{n-1}{n+1}< x <\frac{n+1}{n-1}
  • The number of rational terms in the expansion of \tt \left[a^{\frac{1}{t}}+b^{\frac{1}{k}}\right]^{n} \ is \left[\frac{n}{L.C.M \ of \left\{l,k\right\}}\right] when none of ‘l’ and ‘k’ is a factor of ‘n’ and when atleast one of ‘l’ and k is a factor of ‘n’ is \tt \left[\frac{n}{L.C.M \ of \left\{l,k\right\}}\right]+1 where [·] greatest integer
  • Let f(x) be any polynomial in x, sum of the coefficients = f(1)
  • Sum of the coefficients of even powers of \tt x=\frac{f\left(1\right)+f\left(-1\right)}{2}
  • Sum of the coefficients of odd powers of \tt x=\frac{f\left(1\right)-f\left(-1\right)}{2}
  • Number of terms in (1 + x)n is “n + 1” when ‘n’ is positive integer infinite ‘n’ is not a positive integer and |x|<1
  • First negative term in \tt \left(1+x\right)^{p/q} when 0 < x < 1 , p, q are positive integers and ‘P’ is not a multiple of ‘q’ is \tt \left[\frac{p}{q}\right]+3
  • If ‘x’ is very small so that x2 and higher powers of ‘x’ can be neglected. Then
    (1) \tt \left(1+x\right)^{\frac{p}{q}}=1+\frac{p}{q}x     (2) \tt \left(1+x\right)^{\frac{-p}{q}}=1-\frac{p}{q}x
    (3) \tt \left(1-x\right)^{\frac{p}{q}}=1-\frac{p}{q}x       (4) \tt \left(1-x\right)^{\frac{-p}{q}}=1+\frac{p}{q}x
  • The coefficient of xn−1 in the expansion of \tt \left(x-1\right)\left(x-2\right).......\left(x-n\right) \ is \ \frac{-n\left(n+1\right)}{2}
  • The coefficient of xn−1 in the expansion of \tt \left(x+1\right)\left(x+2\right)......\left(x+n\right) \ is \ \frac{n\left(n+1\right)}{2}
  • The coefficient of xn−2 in the expansion of \tt \left(x-1\right)\left(x-2\right)......\left(x-n\right) \ is \ \frac{n\left(n+1\right)\left(n-1\right)\left(3x+2\right)}{24}
  • If the coefficients of pth, qth terms in the expansion of (1 + x)n are equal then p + q = n + 2
  • If the coefficients of xr, xr+1 in the expansion of \tt \left(a+\frac{x}{b}\right)^{n} are equal, then n = (r + 1)(ab + 1) −1
  • If nCr−1 : nCr : nCr+1 = a : b : c then \tt r=\frac{a\left(b+c\right)}{b^{2}-ac}, n=\frac{ab+bc+2ca}{b^{2}-ac}
  • For n > 6 \tt \left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n}{2}\right)^{n}
  • nn+1 > (n + 1)n  ∀ n ∈ N
  • nn > (n + 1)n-1  ∀ n ∈ N.

Disclaimer: Compete.etutor.co may from time to time provide links to third party Internet sites under their respective fair use policy and it may from time to time provide materials from such third parties on this website. These third party sites and any third party materials are provided for viewers convenience and for non-commercial educational purpose only. Compete does not operate or control in any respect any information, products or services available on these third party sites. Compete.etutor.co makes no representations whatsoever concerning the content of these sites and the fact that compete.etutor.co has provided a link to such sites is NOT an endorsement, authorization, sponsorship, or affiliation by compete.etutor.co with respect to such sites, its services, the products displayed, its owners, or its providers.

Greatest Coefficient
a). If n is even, then in (x + a)n , the greatest coefficient is nCn/2.
b). If n is odd, then in (x + a)n , the greatest coefficient is \tt ^nC_\frac{n-1}{2} \ or \ ^nC_\frac{n+1}{2} both being equal.

2. If C0, C1, C2, .... Cn are the coefficients of (1 + x)n, then
i) nCr + nCr−1 = n+1Cr
ii) \frac{^nC_r}{^{n-1}C_{r-1}}=\frac{n}{r}
iii) \frac{^nC_r}{^{n}C_{r-1}}=\frac{n-r+1}{r}
iv) C0 + C1 + C2 + ...+ Cn = 2n
v) C0 + C2 + C4 + ... = C1 + C3 + C5 + .... = 2n−1
vi) C0 − C1 + C2 − C3 + ....+ (−1)n Cn = 0
vii) C0Cr + C1Cr+1 + ...+ Cn−r = 2nCn+r = \frac{\left(2n\right)!}{\left(n-r\right)!\left(n+r\right)!}
viii) C_0^2+C_1^2+C_2^2+...+C_n^2={^{2n}C_n}=\frac{\left(2n\right)!}{\left(n!\right)^{2}}
ix) C0 − C2 + C4 − C6 + ...= \left(\sqrt{2}\right)^{n}\cos \frac{n\pi}{4}
x) C1 − C3 + C5 − C7 + ...= \left(\sqrt{2}\right)^{n}\sin \frac{n\pi}{4}
xi) C0 − C1 + C2 − C3 + ... + (−1)r n−1 Cr, r > n
xii) C_0^2-C_1^2+C_2^2-C_3^2+ ... = \begin{cases}0,if \ n \ is \ odd. &\\\left(-1\right)^{n/2}\cdot {^nC_{n/2}}, if \ n \ is \ even \end{cases}
xiii) C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+...+\frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{\left(n+1\right)}
xiv) C_{0}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\frac{C_{3}}{4}+...+\left(-1\right)^{n}\frac{C_{n}}{n+1}=\frac{1}{n+1}
xv) C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{2^{2}}+\frac{C_{3}}{2^{3}}+...+\frac{C_{n}}{2^{n}}=\left(\frac{3}{2}\right)^{n}